次の表 5 は、茨城県の高等学校卒業者に占める進学者数の推移である。前節の「対応しているデータ」の場合と似ているが、このような時間に対して何らかの変量を取るデータを時系列データという。それでは、このようなデータについて、時間的変動パターンの規則性を知るためにはどのようにすればよいか。

表 5 進学者数の推移
 
年度進学者数
200813,593
200913,684
201013,273
201113,090
201212,894
201312,380
201412,679
201512,867
201612,764
201712,940
201812,701
201912,645
 

考え方と適用手法

時系列データの変動パターンを視覚的にとらえて把握するためには、いわゆる折れ線グラフを適用する。さらに、傾向変動をとらえるために目測法、移動平均法、最小二乗法(回帰分析)などが適用できる。ただし、変動パターンは直線的とは限らないので、以下のどの方法が適切か、データのどの期間に適用できるのか等、個々のデータの特性に応じてよく吟味する必要がある。

目測法

観測者の主観により、折れ線グラフの傾向に最適と思われる直線を目分量で引く。当然のことながら、観測者により異なった直線が得られる。

移動平均法

一定期間の平均を、期間の位置をずらしながら求めた移動平均値により、傾向線(移動平均線)を求める方法を移動平均法と呼ぶ。平均をとる一定期間の間隔を調節することで、短期、中期、長期の傾向を把握することができる。移動平均線は実際の動きを平滑化し、少し遅れて追随する。

最小二乗法(回帰分析)

近似直線を求める方法であり、既述の回帰分析と全く同じ方法である。ただし、時間軸のスケールについては、必要に応じて工夫することが多い。直線的傾向の強いデータに適用する必要がある。

#ref(): File not found: "tsd.png" at page "n05"

図 7 進学者数の推移
[授業計画に戻る]

トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS