次のデータは、T 大学女子学生 100 人のバストである。 このデータの基本統計量および度数分布表とヒストグラムを作成せよ。

表 T大学女子学生 100 人のバスト

			- / • •	_ , , , , .		•	•		
78	87	82	80	75	80	79	85	88	78
78	81	86	85	78	80	82	79	83	82
88	75	82	90	93	81	80	79	78	80
85	85	84	82	88	80	86	83	85	82
85	80	80	84	80	87	85	80	92	78
80	88	82	80	81	85	82	83	89	80
83	76	80	80	85	78	78	96	79	78
83	80	75	80	91	80	85	94	80	83
82	83	86	85	83	83	80	85	78	71
84	83	83	85	85	79	82	80	82	83

(単位 cm)

次の表は、成人男性 10 人の身長と体重に関するデータである。

このデータの散布図を作成し、相関係数を求めよ。また、その相関について簡 潔に述べよ。

表 成人男性 10 人の身長と体重

身長	体重
171	68
183	75
165	55
169	65
176	59
166	70
173	82
155	45
185	88
170	58
	171 183 165 169 176 166 173 155 185

次に示すデータは某高校の実力テストの点数 x と某大学の入試の点数 y を 22 人の生徒に対して示したものである。

このデータにおける x と y の相関係数、y の x への回帰直線を求めよ。また、求めた回帰式の決定係数を求め、回帰式の信頼度が高いと判断される場合には、入試で満点(1,000 点)をとるには、高校の実力テストで何点とる必要があるか予測せよ。

表 入試と実力テストの点数

生徒番号	実力テスト(x)	入試(y)
1	527	673
2	731	690
3	425	503
4	853	870
5	620	612
6	516	595
7	872	920
8	638	671
9	585	536
10	627	615
11	477	485
12	763	806
13	545	512
14	603	656
15	585	621
16	674	718
17	483	517
18	821	890
19	327	423
20	704	778
21	640	736
22	317	362

次に示すデータは、変量 x を連続的に変化させながら、観測値 y を記録したものである。

このデータにおける x の y への多項式回帰を求めよ。また、求めた回帰式の決定係数を求め、回帰式の信頼度が高いと判断される場合には、理論値としての y の最小値とそれを実現する x の値を求めよ。

表 変量 x と観測値 y

7				
変量 x	観測値 y	観測値 y		
	(実験 1)	(実験 2)		
1	4.04	4.26		
2	3.48	3.28		
3	3.41	3.13		
4	3.32	3.48		
5	3.54	3.58		
6	4.81	5.13		
7	5.52	6.35		
8	7.37	7.12		

次に示すデータはある鉄道会社の貨物輸送量である。

- (1) 3年間の移動平均を計算し、元データとともにグラフ化せよ。
- (2) 5年間の移動平均を計算し、グラフに追加せよ。
- (3) 1987~1996年のデータの直線傾向線を最小二乗法により求めよ。
- (4) 最小二乗法により 2000 年の貨物輸送量の予測値を求めよ。

表 貨物輸送量

	文 其物制 <u></u>			
年 度	輸送量(キロトン)			
1977	564			
1978	550			
1979	584			
1980	590			
1981	602			
1982	624			
1983	613			
1984	586			
1985	574			
1986	516			
1987	466			
1988	455			
1989	406			
1990	404			
1991	423			
1992	370			
1993	334			
1994	302			
1995	271			
1996	227			

次に示すデータは、水俣病疾患の猫と健康な猫における脳と肝臓の中の総水銀量(ppm)を調査したものである。

散布図により判定の可能性を吟味し、線形判別関数(重回帰分析)による判別 分析を行え。

表 猫の体内の総水銀量(ppm)

Sample	水俣病の猫		Sample	健康な猫		
No.	脳 X1	肝臓 X2	No.	脳 X1	肝臓 X2	
1	9.1	54.5	1	2.3	31.8	
2	10.4	68.0	2	0.7	14.5	
3	8.2	53.5	3	2.5	33.3	
4	7.5	47.6	4	1.1	33.4	
5	9.7	52.5	5	3.9	61.2	
6	4.9	45.3	6	1.0	12.3	

次に示すデータは、ある診療所での患者の到着時刻と診療時間を記録したものである。

この診療所の患者の到着時刻、待ち時間、診療時間を分析するために必要なタ イムチャートを作成せよ。

表 到着時刻と診療時間

患者	到着時刻	診療時間
1	9:01	21
2	9:16	12
3	9:30	8
4	9:42	15
5	9:55	19
6	10:07	16
7	10:25	12
8	10:37	21
9	10:45	25
10	11:02	9

3月に需要が伸びるベッドとタンスを多く仕入れ、商品在庫として倉庫に収めたい。以下の制約条件の下で、利益を最大にするためのベッドとタンスの最適仕入れ数を求めよ。ただし、商品はすべて売り切れるものとする。

	ベッド	タンス	倉庫面積/仕入予算
収納面積	2 m ² /台	1 m ² /台	100 m ²
仕入原価	3 万円/台	6 万円/台	240 万円
利益	2 万円/台	3 万円/台	