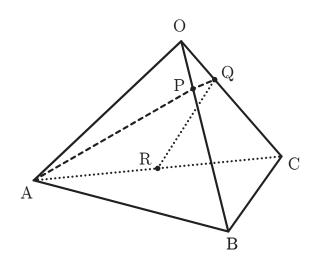
2017年度 茨城キリスト教大学入学試験問題

数学 I (A日程)

解答上の注意

- 1. 解答は解答用紙に記入し、計算式の欄には計算過程を記述しなさい。
- 3. 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答えなさい。 例えば、 $4\sqrt{2}$ と答えるところを、 $2\sqrt{8}$ のように答えてはいけません。 また、分数は分母を有理化して答えなさい。


I 以下の問いに答えなさい。

- 問 1 (x+y-z+2)(x-y-z-2) を展開しなさい。
- 問 2 x^4+4 を因数分解しなさい。
- 問 3 $\sqrt{3}-\frac{1}{2}$ の小数部分を a とするとき、 $\frac{3}{2a}$ の値を求めなさい。
- 問 4 定義域 $-3 \le x \le 1$ における、関数 $y = \left|2x^2 + 5x 3\right|$ の最大値を求めなさい。
- 問 5 $A = \{n \mid n \text{ は } 15 \text{ の約数}\}, B = \{n \mid n \text{ は } 12 \text{ の約数}\}, C = \{n \mid n \text{ は } 5 \text{ 以下の自然数}\}$ とするとき、次の集合を求めなさい。
 - (1) $A \cup B \cup C$
- (2) $A \cap B \cap C$

Ⅱ 以下の問いに答えなさい。

- 問 1 縦の長さが横の長さの $\frac{1}{2}$ の紙がある。この紙の四隅から 1 辺 2 cm の正方形を切り取り、ふたのない直方体の容器を作るとき、容器の容積が $12~\mathrm{cm}^3$ 以上 $60~\mathrm{cm}^3$ 以下にするために必要な紙の縦の長さの範囲を求めなさい。
- 問2 ある数値データ 14,8,13,12,10,9 について、次の値を求めなさい。
 - (1) 中央値
- (2) 四分位範囲
- (3) 四分位偏差

- 皿 放物線 $y=x^2$ と直線 y=x+12 が 2 点 A, B で交わっている(x 座標が小さい方を点 A とする)。また、点 A を通る傾き -2 の直線と放物線との交点で点 A でない方を点 C と するとき、以下の問いに答えなさい。
 - 問1 点A,B,Cの座標をそれぞれ求めなさい。
 - 問2 線分BCの傾きを求めなさい。
 - 問3 \triangle ABC の面積 S を求めなさい。
- m N 1 辺の長さが 2 の正四面体 OABC において、辺 OB 上に点 P、辺 OC 上に点 Q をとり、 図のように点 P から点 P0 を経由して辺 P0 上の中点 P1 に至る経路を考えるとき、以下 の問いに答えなさい。

- 問1 正四面体の展開図を描き、最短となる経路 APQR の長さを求めなさい。
- 問2 問1の条件を満たす点Pを考えるとき、OPの長さを求めなさい。
- 問3 問1の条件を満たす点Qを考えるとき、OQの長さを求めなさい。

2017年度 茨城キリスト教大学入学試験

数学 I 解答用紙 (No.1) (A 日程)

Ι

問1	$x^2 - y^2 + z^2 - 2xz - 4y - 4$	問 2	$(x^2 + 2x + 2)(x^2 - 2x + 2)$
問 3	$2\sqrt{3}+3$	問4	<u>49</u> 8

問 5

(1)	(2)
{ 1, 2, 3, 4, 5, 6, 12, 15 }	{ 1, 3 }

 ${\rm I\hspace{-.1em}I}$

問1

問 2

(1)	(2)	(3)
11	4	2

小 計

 ${\rm I\hspace{-.1em}I\hspace{-.1em}I}$

問 1

計算式

$$y=x^2$$
 と $y=x+12$ が点 A, B で交わることより
$$x^2=x+12$$

$$(x+3)(x-4)=0$$

$$x=-3,\ 4$$
 それぞれ $y=x^2$ に代入して $y=9,\ 16$

傾き -2 の直線を y=-2x+b と置き、求めた点 $A(-3,\ 9)$ の座標値を代入すると

$$b = 3$$

| 求めた直線 y = -2x + 3 と放物線 $y = x^2$ が点 A, C で交わることから

$$x^2 = -2x + 3$$

 $(x-1)(x+3) = 0$
 $x = 1, -3$ $x = 1$ を $y = x^2$ に代入して $y = 1$

答え A(-3, 9) B(4, 16) C(1, 1)

問 2

計算式

線分 BC を含む直線を y=ax+b と置き、点 B, C の座標値を代入して連立すると

$$\begin{cases} 16 = 4a + b \\ 1 = a + b \end{cases}$$

$$a = 5, \quad b = -4$$

答え

5

2017年度 茨城キリスト教大学入学試験

数学 I 解答用紙 (No.2) (A 日程)

問 3

計算式

線分 AB 上にあり、点 C と同じ x 座標値 x=1 をもつ点 P を考えると、 その座標値は線分 AB を含む直線の式から P(1, 13)

$$\triangle ABC = \triangle ACP + \triangle BCP$$

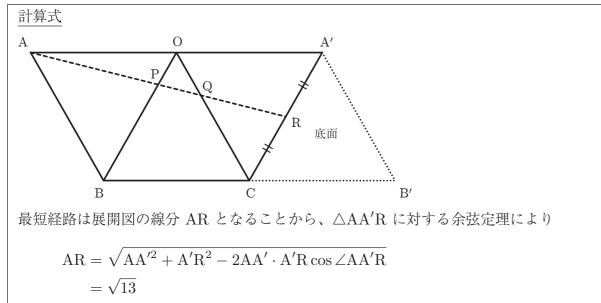
 x_A, x_B, x_C をそれぞれ点 A, B, C の x 座標値、 y_C, y_P を点 C, P の y 座標値と置くと

$$S = \frac{1}{2} (y_P - y_C) (x_C - x_A) + \frac{1}{2} (y_P - y_C) (x_B - x_C)$$

$$= 24 + 18$$

$$= 42$$

答え


42

 $\sqrt{13}$

小 計

 \mathbb{N}

問 1

答え

問 2

計算式

 $\triangle AOP$ と $\triangle AA'R$ は $\angle OAP$ を共通にもち、その対辺は OP # A'R であるから

 $\triangle AOP \Leftrightarrow \triangle AA'R$

また、AO: AA' = OP: A'R = 1:2 であることから

$$OP = \frac{A'R}{2} = \frac{1}{2}$$

答え

 $\frac{1}{2}$

問 3

計算式

 $\triangle QOP$ と $\triangle QCR$ は $\angle OQP = \angle CQR$ で、そのそれぞれの対辺は OP # CR であるから

 $\triangle QOP \Leftrightarrow \triangle QCR$

また、OP: CR = QO: QC = 1:2 であることから

$$OQ = \frac{OC}{3} = \frac{2}{3}$$

答え

 $\frac{2}{3}$

小 計

総計

受験番号

2017年度 茨城キリスト教大学入学試験

数学 I 解答用紙 (No.3) (A 日程)

余白(計算用に利用してください。この用紙も回収します。)